当前位置: 首页 » 新闻资讯 » 厂商 » 正文

低场核磁共振设备的工作原理分析_91化工仪器网

分享到:
放大字体  缩小字体    发布日期:2019-09-02  来源:仪器信息网  作者:Mr liao  浏览次数:390
核心提示:低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过专用的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。 从硬件上来讲,整个台式低场核磁共振仪的工作原理可简要的概括为:在计算机的控制下,DDS(直接数字频率合成源)产生满足共振条件的射频信号,在波形调制信号的
        低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过专用的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。 从硬件上来讲,整个台式低场核磁共振仪的工作原理可简要的概括为:在计算机的控制下,DDS(直接数字频率合成源)产生满足共振条件的射频信号,在波形调制信号的控制下,调制成所需要的形状,并送到射频功放系统进行功率放大后经发射线圈发射并激发样品产生核磁共振。在信号采集期间,射频线圈将对此核磁共振信号感应得到核磁共振信号(FID信号),经前置放大后在二级放大板中与DDS产生的等辐射频信号进行混频后放大,zui后送入ADC(模数变换器)进行数据采集与模数转换,采集的数据送入计算机进行相应处理就可得到核磁共振信号的谱线。在二维核磁共振成像序列中,还需要从脉冲序列发生器中发出三路梯度控制信号,分别经梯度功放后经由梯度线圈产生三个维度上的梯度磁场,起到对核磁共振信号进行空间定位的作用,通过计算机处理获取数据从而得到样品的二维图像。

关注本网官方微信 随时阅读专业资讯

 
 
打赏
[ 新闻资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]
免责声明:
本网站部分内容来源于合作媒体、企业机构、网友提供和互联网的公开资料等,仅供参考。本网站对站内所有资讯的内容、观点保持中立,不对内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如果有侵权等问题,请及时联系我们,我们将在收到通知后第一时间妥善处理该部分内容。
 

低场核磁共振设备的工作原理分析_91化工仪器网二维码

扫扫二维码用手机关注本条新闻报道也可关注本站官方微信账号:"xxxxx",每日获得互联网最前沿资讯,热点产品深度分析!
 

 
0相关评论