锫(pei),英文名是Berkelium,是一种放射性化学元素,符号为Bk,原子序为97,属于锕系元素和超铀元素。位于美国加州伯克利的劳伦斯伯克利国家实验室在1949年12月发现锫元素,因此锫以伯克利(Berkeley)命名。锫是继镎、钚、锔和镅后第五个被发现的超铀元素。
最常见的锫同位素是锫-249,主要经高通量核反应炉产生。目前制造该同位素的有美国田纳西州的橡树岭国家实验室和俄罗斯季米特洛夫格勒的核反应器研究所。第二重要的同位素锫-247要用高能量α粒子向锔-244进行撞击而产生。
从1967年至今,在美国生产的锫元素仅仅超过1克。除在科学研究中用来合成更重的超铀元素和超锕系元素外,锫没有实际的用途。2009年,在进行250天的辐射后,橡树岭国家实验室制成了22毫克的锫-249,并在其后的90天内对该样本进行了纯化处理。纯化后的锫元素同年被送到俄罗斯联合核研究所,以钙-48离子向其撞击150天后,合成了Uus(117号元素)。
锫是一种柔软的银白色放射性金属。锫-249同位素辐射的是低能电子,所以相对安全。不过,其半衰期为330天,衰变后会产生锎-249,而该同位素会释放高能量的α粒子,十分危险。这种衰变的现象在研究锫元素及其化合物属性时尤其重要,因为不断生成的锎不但会污染化学样本,还会释放辐射,破坏样本的结构。
锫的应用目前锫在基础科学研究之外没有实际的用途。锫-249常被用于制备更重的超铀元素和超锕系元素,如铹、鑪。它也可以被用于制造锎-249。对锎的化学研究常用到锎-249,以取代放射性更强、须用中子撞击产生的锎-252同位素。美国和俄罗斯从1989年起开始合作合成113至118号元素。橡树岭国家实验室于2009年在进行250天长的粒子照射后,产生了22毫克的锫-249。该样本被送往位于俄罗斯杜布纳的联合核研究所(JINR),并在U400回旋加速器中经钙离子撞击150天后,首次产生了共6颗的Uus原子。
锫的危害科学家并不了解锫会对人的身体有何影响,而且无法拿其他元素借鉴,因为锫的辐射产物很不同(锫释放电子,而大部分其他锕系元素则释放α粒子和中子)。锫-249所释放的电子能量颇低(不足126 keV),在其他衰变发生的同时,信号受到干扰而无法被探测到,因此相比其他锕系元素,它对人体相对无害。不过,锫-249会变为释放大量α粒子的锎-249同位素,半衰期只有330天。锎-249非常危险,必须在特殊的实验室里,在手套箱内处理。
大部分有关锫的毒性的数据都是来自于动物实验的。当老鼠进食锫之后,大约只有0.01%的锫元素会进入血液。血液中的锫有65%进入骨骼,并存留约50年;25%进入肺部(生物半衰期约为20年);0.035%进入睾丸或0.01%进入卵巢,并永久存留;约10%排出体外。锫在以上的器官内都可以致癌,而在骨骼系统内,它还会破坏红血球。人类骨骼里锫-249的量的允许上限为0.4纳克
锫的特殊性质
物理特性α型锫金属的双六方密排晶体结构,层序为ABAC(A:绿色,B:蓝色,C:红)锫是一种柔软的银白色放射性锕系金属,在元素周期表中位于锔之右,锎之左,镧系元...[查看全部]
发现人: 西博格、S.G.汤普生、乔克
发现年代:1949年
元素来源:
锫没有稳定的同位素,自然界不存在。在回旋加速器中用加速的氦核轰击镅-241而获得。
名称由来:
得名于锫的发现地--加利福尼亚州伯克利市(Berkeley)。
在合成95、96号元素后,经过5年的准备工作,西博格领导的小组在1949年末用高能α粒子轰击镅-241,得到97号元素。
1951年 麦克米伦 (Edwin Mattison McMillan,1907—)美国人,发现和研究超铀元素镅、锔、锫、锎等西博格(Glenn Thedore Seaborg,1912-1999)美国人,发现和研究超铀元素镅、锔、锫、锎等。
1949年12月,格伦·西奥多·西博格、阿伯特·吉奥索和Stanley G. Thompson 使用伯克利加州大学的1.5米直径回旋加速器,成功合成并分离出锫元素。在1949至1950年同期被发现的还有锎元素(原子序为98)。
与95和96号元素相似,发现团队为97号元素命名时,也参考了元素周期表中对上的镧系元素的命名方式。95号元素镅(Americium)是以其发现所在的美洲大陆(America)命名的,类似于以欧洲(Europe)命名的铕元素;96号元素锔则是以科学家玛莉·居礼(Marie Curie)和皮埃尔·居礼(Pierre Curie)命名的,类似于以科学家、工程师约翰·加多林(Johan Gadolin)命名的钆元素。发现团队在报告中写道:“我们建议以发现所在的伯克利城(Berkeley),将第97号元素命名为Berkelium(符号Bk),就像它的化学同系物铽(Terbium,65号)是以矿物发现所在地瑞典伊特比(Ytterby)命名的一样。”
锫的合成过程中最困难的是要产生足够的镅作为目标体,以及要从最终产物中把锫分离出来。首先,铂薄片上要涂上硝酸镅(Am)溶液,在溶液蒸发后,残留物须退
... 查看全文物理特性
α型锫金属的双六方密排晶体结构,层序为ABAC(A:绿色,B:蓝色,C:红)
锫是一种柔软的银白色放射性锕系金属,在元素周期表中位于锔之右,锎之左,镧系元素铽之下。锫的许多物理和化学特性与铽相似。锫的密度为14.78 g/cm,介乎锔(13.52 g/cm)和锎(15.1 g/cm)之间;其熔点(986 °C)也高于锔(1340 °C),低于锎(900 °C)。锫的体积模量(该物质抗衡均匀压力的强度)是锕系元素中相对较低的,大约为20GPa(2×10Pa)。
由于f轨道电子的内部跃迁,Bk离子会发出萤光,峰值在652纳米(红光)和742纳米(深红光,近红外线)波长处。激发功率和样本的温度会影响这两个峰值的相对亮度。要观察到这一萤光现象,可以把硅酸盐玻璃连同氧化锫或卤化锫一起加热,使锫离子在熔化了的玻璃中分散。
当温度介乎70 K和室温之间时,锫呈居里外斯顺磁性,实际磁矩为9.69玻尔磁子(µB),居里温度为101 K。实际磁矩值几乎与简单原子L-S耦合模型计算出的理论值9.72 µB相同。当温度降到大约34 K的时候,锫会转为呈反铁磁性。锫在标准状态下在氢氯酸中的溶解焓为−600 kJ/mol,并可依此推算出水溶Bk离子的标准生成焓(ΔfH°)为−601 kJ/mol。Bk与Bk间的标准电极电势为−2.01 V。中性锫原子的电离电势为6.23 eV。

在一般情况下,锫的结构是最稳定的α型。该结构呈六方对称形,空间群为P63/mmc,晶格参数分别为341 pm和1107 pm。该晶体有着双六方密排结构,层序为ABAC,因此它与α-镧和锔以后的锕系元素的α型晶体同型(具有相似的结构)。这种结构随着压力和温度而变化。在室温下压缩到7 GPa时,α-锫会转变为β型,该结构属于面心立方(fcc)对称型,空间群为Fm3m。这种结构转变不会使体积产生变化,但其焓会增加3.66
... 查看全文