当前位置: 首页 » 新闻资讯 » 厂商 » 正文

盘点一下核电站设备用到的主要金属材料

分享到:
放大字体  缩小字体    发布日期:2019-03-08  来源:仪器信息网  作者:Mr liao  浏览次数:941
  不同堆型,其结构和用途虽有所不同,但实现可控制核裂变反应的过程是相同的,都需要燃料元件、堆内构件、控制棒、反射层、冷却剂和慢化剂(快堆除外)以及包容它们的压力容器或压力管道等,因而需要各种各样的材料来制造相关部件,以实现核能向热能、热能向电能的安全、高效率的转化。   按照相关设备部件服役工况或使用功能的不同,核电设备可分为核一级、核二级、核三级和非核级。有核级要求的设备,一般即称其所用材料为核电关键材料。   核电常用的关键材料大体可分为碳钢、不锈钢和特殊合金,若进一步细分,则有碳(锰)钢、低合金钢、不锈钢、锆合金、钛铝合金和镍基合金等,按品种则有铸锻件、板、管、圆钢、焊材等等。   核反应堆的发展,从开始就包括了材料的开发与优化,材料的发展很大程度上决定了核反应堆发展的成熟度。因为核电具有新的热传导条件及特殊的环境条件,如辐照或冷却剂腐蚀等,要求所用材料必须能适合这些应用条件;强调材料的另一原因是,核电站系统比常规电站有更高的安全要求。   由于我国目前正在建造的主要是第二代成熟的1000MW压水堆核电站,同时也在通过技术引进并吸收国外先进技术以发展先进的第三代1000MW堆核电站。因此,本文以压水堆核电站为例,对其不同设备的用材做一简单介绍。   在压水堆核岛中,主要设备除反应堆及压力容器外,还有蒸汽发生器、反应堆冷却剂主泵机组、稳压器及主管道等。由于这些部件在核岛内的位置、作用和工况不同,故材料的使用要求和环境条件也不尽相同,不同程度地存在辐照或酸腐蚀等;不仅要考虑常规的一些要求(如强度、韧性、焊接性能和冷热加工性能),而且须考虑辐照带来的组织、性能、尺寸等变化,如晶间腐蚀、应力腐蚀、低应力脆断、材料间的相容性、与介质的相容性以及经济可行性等。   为便于从它们的服役特点中理解每个部件的功能、选择依据,下面将压水反应堆核岛内重要金属部件的工况、要求以及它们的所用材料体系简述如下。   1压水堆零/部件用金属材料1.1.1 包壳材料   包壳是指装载燃料芯体的密封外壳。其作用是防止裂变产物逸出和避免燃料受冷却剂的腐蚀以及有效地导出热能,在长期运行的条件下不使放射性裂变物逸出。   工况最为苛刻:内受裂变产物、外受冷却剂腐蚀和温度、压力的作用,并受到强烈的中子辐射和冷却剂的冲刷、振动以及内应力、热循环(开、停堆时)应力和燃料肿胀等作用。   因而,包壳材料应有以下性能:热中子吸收截面小、感生放射性小、半衰期短、强度高、塑韧性好、抗腐蚀性强、对晶间应力腐蚀和吸氢不敏感;热强性能、热稳定性和抗辐照性能好;导热率高、热膨胀系数小,与燃料和冷却剂相容性好;易于加工、便于焊接和成本低。   适宜作为包壳的材料主要有:铝及铝合金、镁合金、锆合金和奥氏体不锈钢以及高密度热解碳。   在压水堆中,主要采用了锆合金。这是因为其热中子吸收截面小、导热率高、力学性能好,具有良好的加工性能以及与二氧化铀有较好的相容性,尤其对高温水及水蒸汽也有良好的抗腐蚀性和热强性。       1.1.2 堆内构件材料   在压水堆中除了反应堆压力容器和燃料组件及相关的组件以外的均为堆内构件如压紧板、导向筒、吊篮围板、流量分配板、上下栅格组件等。   作用有:支撑燃料组件及精确定位、为控制棒及堆芯测量装置和辐照监督和提供支撑和导向、合理分配冷却剂流和减少压力容器内表面的中子注量。   工作环境:面对活性区、受到冷却剂冲刷和高温、高压作用。   堆内构件用材应度具有强度高、塑韧性好、高温性能好、中子吸收截面和中子俘获截面以及感生放射性小、抗腐蚀性、抗辐照性能好并与冷却剂相容好,导热率高、热膨胀系数小,易于加工、便于焊接和戚本低。   适合于压水堆内构件用材料要为奥氏体不锈钢以及部分镍基合金。   1.1.3 反应堆回路材料压水反应堆的回路管道是维持和约束冷却剂循环流动的通道。   作用:封闭高温、高压和带强放射性的冷却剂、对反应堆安全和正常运行起保障作用。   回路管道用材料应备具有如下性能:抗应力腐蚀、晶间腐蚀和均匀腐蚀的能力强,基体组织稳定、夹杂物少、具有足够强度、塑性和热强性能,铸锻造和焊接性能好、生产工艺成熟、成本低、有类似的使用经验,Co含量尽量低。   适合于压水堆回路管道的主要材料为奥氏体不锈钢。   1.1.4 反应堆压力容器材料反应堆堆压力容器是装载堆芯、支撑堆内所构件和容纳回路冷却剂并维持其压力的堆本体承压壳体。   它是由上、下封头和筒体组成;它与一回路管道共同组成冷却剂力边界;还具有密封放射性、阻止裂变产物逸散的功能。   对反应堆压力容器用材要求:强度高、塑韧性好、抗辐照性能和抗腐蚀性强、与冷却剂相容性好;纯净度高、偏析和夹杂物少、晶粒细小、组织稳定;易于进行冷热加(包括焊接和淬透性好);成本低、高温高压下使用经验丰富。   反应堆压力容器,目前国内外广泛采用的A508III(Gr.3C1.1)、16MND5,内壁堆焊不锈钢。   1.1.5 蒸汽发生器材料蒸汽发生器是将压水堆一回路的热能传递给二回路介质以产生蒸汽的热交换设备,一般采用带汽水分器的饱和式自然循环蒸汽发生器。一般为管壳式,由简体、管板、汽水分离器及外壳容器、传热管等部件组成。   蒸汽发生器传热管为压水堆核电站中的核心部件,起着一、二回路的能量交换的重要作用,并对一回路压力边界完整性有重大影响。   传热管在特定结构和介质条件下,承受高温、高压和管子内外的压差以及腐蚀、水力振动等工况的作用,容易造成各种类型的腐蚀和应力腐蚀破坏。   传热管应具有:热强性、热稳定性和焊接性好;基体组织稳定、导热率高、热膨胀系数小;抗均匀腐蚀和局部腐蚀能力强;具有足够的塑性和韧性以适应弯管、胀管的加工和抗振动。   蒸汽发器的筒体管板一般采用反应堆压力容器相同或相近的材料,如A508III(Gr.3C1.1)、18MND5,其它一些部件如分离器则采用碳(锰)钢或低合金钢等。   2材料体系在国际上的核电运作建设中,ASME体系(通用和西屋)、俄罗斯(石墨慢化反应堆和俄罗斯压水堆)体系、法国RCC-M(压水堆)体系、加CAND(重水铀反应堆)体系和德国KTA体系等。不同体系的压水堆中所用关键材料有所不同、但相对还是比较接近。下面表1.1为各主要核电国家体系用材情况。   目前,我国的核电材料标准体系并未完全建立(正逐渐建立之中),主要采用了引进技术中所列的一些国外牌号材料,如表1.1中所列的RCC-M、ASME等体系材料。   3、锰镍钼类低合金钢铁素体钢的价格便宜,通过热处理能够得到需要的低温和高温力学性能,且物理性能较为理想,可加工制造特大、特厚型部件。为防止高温冷却剂腐蚀,在表面上可堆焊耐腐蚀的奥氏体不锈钢。反应堆压力容器、蒸汽发生器、稳压器冷却泵泵壳即是用此这类钢制造。   主要钢种有法国RCC-M 16MND5和18MND5,美国ASME中的SA-302GrC、SA-533、SA-508III(Gr.3C1.1)、SA-541Gr3,德国VDTUV384中的13MnNiMo5-4等。   3.1 简介   这类含Mn、Ni、Mo(Nb)的低合金钢,分别列于美国的ASME规范中的SA-302M、SA-533M(钢板)、SA-508M、SA-541M(锻件)。与法国RCC-M中相关M规范有对应或接近的材料。而德国技术监督协会材料公报VDTUV384中的MnNiMo5-4系锅炉及压力容器专用钢板。   除了德国的13MnNiMo5-4外,其余材料在我国压力容器用钢的标准系列中尚无直接对应的牌号,仅GB/T1544-95标准(压水堆压力容器选材原则与基本要求)中引用了这些材料。   3.1.1 16MND5、18MND5   这是法国RCC-M体系中的材料,其中M2111-M2117、M2119、M2131涉及到的为16MND5锻件,M2141、M2142为16MND5钢板及锻制封头,M2121、M2122为16MND5钢板及压制封头,M2125-M2128则为18MND5钢板及压制封头,M2133-M2134为18MND5锻件等。   这两种材料化学成分要求基本相同,18MND5的强度上略高(这是对成分、热处理淬火或回火参数进行控制而有意造成的)。由于Mn、Ni、Mo在钢中的作用,具有较好的淬透性、高温性能和低回火脆性特征。   在我国压力容器用钢的标准系列中未有明确对应的牌号,只在GB/T15443-95标准附录中引用了相关标准的材料。   3.1.2 SA-302 Gr.C、SA-533B等   这几种材料系ASME体系的材料,与上述的16MND5、18MND5接近,材料型式同样有钢板、锻件,分列于美国的ASME标准中的SA-302 Gr.C、SA-533B(钢板)或SA-508III(Gr.3C1.1)、SA-541Gr.3(锻件)等规范。   3.1.3 13MnNiMo5-4   系德国六十年代研制成功的可焊贝氏体型耐热结构钢,为非列标钢种,是一种添加有镍、铬、钼和微量铌(铌起细化晶粒并强化的作用)的细晶粒低合金钢。该钢有较好的综合力学性能,有较高的高温屈服点和对裂纹不敏感的特性,良好的焊接性能和工艺性能。   国内GB713-2008标准中的13MnNiMoR为对应钢种。   3.2 用途   16MND5、18MND5是法式压水堆核岛设备中最为重要的受压部件材料,应用于反应堆压力容器和蒸汽发生器等部件,如反应堆压力容器整体顶盖(或顶盖+顶盖法兰)、法兰、简体、过渡环、接管等;蒸汽发生器上封头、下封头、管板、筒节、一二次侧人孔、稳压器筒节、冷却泵主法兰等。   ASME对应材料的用途与16MND5和18MND5用途类似,13MnNiMo5-4则主要用于工作温度不超过400℃的各种焊接件,如锅筒、压力容器或封头等构件。   4、奥氏体不锈钢在反应堆中主要采用奥氏体不锈钢,原因在于:   1.马氏体不锈钢虽强度高但因铬含量低致使其耐蚀性较差;而高铬铁素体不锈钢虽耐蚀性较马氏体钢强,但却比奥氏体不锈钢脆性大,且不能用热处理方式进行强化;双相不锈钢综合了铁素体和马氏体不锈钢的特点,却仍有铁素体不锈钢的三种脆性(475℃脆性、 相脆性与高温脆性)和耐热性能、加工性能较差的特点。   2.马氏体不锈钢(不预热而焊接、和不焊后热处理可能产生冷裂与延迟裂纹)一般不用作焊接件;而高铬铁素体不锈钢焊接易引起热影响区晶粒长大使韧性降低,也须预热与焊后热处理,加之其三脆性对安全有威胁。   3.奥氏体不锈钢虽进行去应力处理,但为了防止敏化增加腐蚀倾向,一般不用预热和焊后热处理,因而主回路管道多采用奥氏体不锈钢以便于现场焊接,且奥氏体不锈钢的辐照敏感性较低。   4.虽然奥氏体不锈钢并不能通过热处理强化,但其塑性高、屈强比小、加工硬化率大,通过冷加工也可提高其强度。   因而在反应堆系统中优先选用奥氏体不锈钢种,这里主要有美国ASME中的316L/304L,法国RCC-M中控氮Z2CND18-12、Z2CN19-10,德国的X6CrNiNb1810、G-X5CrNiNb189等。   5、镍(铁)基合金高温下能承受一定应力并具有一定抗氧化性、耐腐蚀且合金含超过50%的金属材料即称为高温合金。其中以高温强度为主兼具耐蚀性的称为耐热高温合金;而以耐蚀为主而兼有一定高温强度的,则称为耐蚀合金。   虽然奥氏体不锈钢具有较高的热强性、良好的抗氧化、抗腐蚀能力,而且焊接性能和冷、热加工性能也比较好,但因其对应力腐蚀比较敏感所以堆内承受载荷的构件和蒸汽发生器传热管现在一般都避免采用18-8不锈钢,而选用各种性能均优于不锈钢、且对应力腐蚀不敏感的镍基合金或铁镍基高温合金。   这类合金材料,Inconl-600(NC15Fe)、Inconl-690(NC30Fe)、改良Incoloy-800,下面就对这几种镍基合金做一简单介绍。   更多相关信息》》》 河北:三年要修复耕地三十万亩 中国不会拯救全球铁矿石供应危机 土壤修复比解决吃饱更重要! 秦朝的青铜剑VS古罗马的铁剑,谁会赢?刀剑真能削铁如泥? 影响焊接结构疲劳强度的因素清单 惊呆了,河南许昌挖出4吨古钱币!
 
 
打赏
[ 新闻资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]
免责声明:
本网站部分内容来源于合作媒体、企业机构、网友提供和互联网的公开资料等,仅供参考。本网站对站内所有资讯的内容、观点保持中立,不对内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如果有侵权等问题,请及时联系我们,我们将在收到通知后第一时间妥善处理该部分内容。
 

盘点一下核电站设备用到的主要金属材料二维码

扫扫二维码用手机关注本条新闻报道也可关注本站官方微信账号:"xxxxx",每日获得互联网最前沿资讯,热点产品深度分析!
 

 
0相关评论