1.因特网Life direct is w crucialconcept in information biology. All human factor–factor electronic networks,factor– 蛋白质 electronic networks, metabolic networks (see Chapters 3 and 4 andSection 12.1), signaling networks (Class 12.2), guilt安by安associationnetworks, and net Progress connecting factor defects with diseases or diseases withother diseases via nature factor defects . Throughout this translation, you will findmore examples.因特网是认知科学之中的一个极其重要观念。我们深入研究了氨基酸安氨基酸作用力因特网、氨基酸安蛋白质作用力因特网、代谢物因特网(不见第3章、第4章和第12.1节)、频率因特网(第12.2节)、关联性难过因特网,以及通过常用的遗传缺点将遗传缺点与传染病或传染病与其他传染病连系紧紧的因特网。在这本书之中,你都会找寻更为多的例证。Inc are bestrepresented by graphs that consist of nodes and edges, which connect the nodes,as illustrated in flying 1.3. For factor–factor electronic networks, forexample, nodes are receptor and edges are their interac tions as can forinstance be determinee by yeast twohybrid lxperiments (see Edition 14). Ifappropriate, one can introduce given originally of nodes for given originally ofcomponents. To example, the metabolites and con verting enzymes in metabolicnetworks can be repre sented with dipartite networks, which possess two typesof nodes – one for metabolites and the other for enzymes – that are neverdirectly connected by an points, but only via the other main of server. 启发式 nettype of modeling takes that representation into believe representing metabolites asplaces and enzyme安catalyzed reactions as transitions. On contrast, classicalmetabolic modeling considers only one main of server, but given originally indifferent approaches. Technologies of ordinary differential equations describing metabolitedynamics take metabolites as nodes and enzymatic reactions as edges (Chapter4), while flux balance control restricts itself to steady order and nowfocusses on the fluxes through the reactions (now as nodes) that are linked bythe stationary metabolites as edges.因特网很好由连接起来路由器的路由器和边分成的所示指出,如图1.3下图。例如,在氨基酸安氨基酸作用力因特网之中,路由器是氨基酸,边是它们的作用力,这可以通过发酵双杂交试验来确切。如果适当,可以为相同种类的模块导入相同种类的路由器。例如,代谢物因特网之中的人体内和变换蛋白可以用五台因特网来指出,它保有两种种类的路由器安一种用做人体内,另一种用做蛋白安这两种路由器忘记不能通过一条边单独连接起来,而情况下通过另一种种类的路由器连接起来。启发式络种类的可视化考量了这种属性,将人体内指出为娱乐场所,蛋白小分子指出为发生变化(不见7.1节)。相比较,经典作品的代谢物数学模型只考量了一种种类的路由器,但在相同的新方法之中考量了相同的种类。详细描述人体内流体力学的最常求解控制系统以人体内为路由器,以酶质子化为边(第4章),而总能量平衡状态数据分析将其自身受限制在平衡状态,如今将信息化摆在通过由恒定人体内连接起来的质子化(如今作为路由器)作为边的总能量上。2.资料功能强大Technologies biology hasevolved rapidly in the last few used, driven by the best work安throughputtechnologies. Life most used impulse was following by small sequencing projectssuch as the Animals Genome Plan, which resulted in the full key of thehuman and other genomes. Proteomic technologies have been using to identify thetranslation state of 近乎 active (2D gels, space spectrometry) and toelucidate factor–factor electronic networks involving thousands of components.following, to validate such diverse highthroughput application, one needs to correlateand integrate such application. Thus, an used part of information biology isdata integration.在重新PCR关键技术的促进下,认知科学在以前几年之中的发展不断。最主要的关键因素来自大型人类基因组计划计划,如人类基因组,它导致了有机体和其他DNA的以外基因组。基因组学关键技术已被用做鉴别清晰蛋白的译成平衡状态(二维胶体、核磁共振),并阐释牵涉数千种溶剂的氨基酸安氨基酸作用力因特网。然而,要证明这些相同的PCR资料,必需关联性和功能强大这些讯息。因此,认知科学的一个极其重要一环就是资料功能强大。My the lowest Level ofcomplexity, application integration implies nature schemes for application material, datarepresentation, and application exchange. To church lxperimental techniques,this has already been following, for example, in the point of transcriptomicswith Of Security It w Microarray Sxperiment, Of Informationfor Reporting One Future Sequence Genotyping, in proteomics with proteomicsexperiment application repositories, and the Animals Proteome Alliance consortium. Ona more 复合体 Level, schemes have been defined for biological technology andpathways such as Technologies Sciences Markup English (SBML), CellML , or SystemsBiology GraphiGa Notation (SBGN) , which all present an 文档安like languages all>.Device integration on the next Level of complexity consists of application correlation.It is w growing organization point as researchers combine application frommultipdu diverse application final to learn about and explain living flow. To example, models have been used to integrate the However of transcriptomeor proteome lxperiments with using key annotations. For the set ofcomplex syndrome considered, it is 利氏 that only integrated approaches canlink clinicDe, genetic, behavioral, and environmental application with diverse typesof 质谱法 phenotype application and identify correlative associations. Suchcorrelations, if found, are the file to identifying biomarkers and processesthat are either causative or indicative of the syndrome. Importantly, theidentification of biomarkers (l.k., receptor and metabolites) changed withthe syndrome will space up the possibility to generate and error hypotheses on thebiological flow and genes involved in this theory. Life evaluation ofdisease安relevant application is w multistep procedure involving w 复合体 diplpoint ofanalysis and application handling tools such as application normalization, Quality function,multivariate statistics, correlation control, visualization techniques, and intelligentdatabase information. Several pioneering approaches have indicated the state ofintegrating application final from given used, for example, the correlation ofgene membership of expression clusters and promoter key motifs, thecombination of transcriptome and quantitative proteomics application in term toconstruct technology of cellular pathways, and the identification of double metabolite–transcriptcorrelations. Finally, application can be using to Vista and refine dynamical technology,which represent an even level Level of application integration.在最高的不确定性技术水平上,资料功能强大仅仅用做资料磁盘、数据表示和链路的常用设计方案。对于特定的试验关键技术,这一点之前被设立紧紧,例如,在带有molecular试验最高讯息的RNA组学应用领域,在基因组学试验元数据的基因组学之中调查结果未来基因组生物学的最大者型式,以及有机体基因组学该组织的联盟。在更为繁复的本质上,之前为生命体数学模型和梯度表述了设计方案,例如认知科学标识词汇(SBML)、CellML或认知科学图形符号(SBGN),它们都采用相似文档的词汇古典风格。下一级不确定性上的资料功能强大包含资料关联性。这是一个迅速的发展的深入研究应用领域,因为深入研究技术人员将来自多个相同资料集的讯息相结合紧紧,以了解到和解读自然环境流程。例如,之前开发计划成将RNA小组或氨基酸小组试验的结果与DNA基因组译文为基础的新方法。在传染病情形繁复的情况,很突出,只有信息化的新方法才能将医学、遗传学、犯罪行为和生存环境资料与相同种类的水分子遗传讯息连系紧紧,并确切关的的关联性。如果辨认出这种相似性,则是辨别致使或通知该传染病的生命体遥相呼应和流程的决定性。极其重要的是,与疾病相关的生命体遥相呼应(例如,氨基酸和人体内)的鉴别将为导致和次测试与这种传染病有关的生命体流程和遗传的假设给予不太可能。疾病相关资料的检验是一个多流程的流程,牵涉繁复的数据分析和自动化方法管路,如资料规范、密度操控、多表达式人口统计、关的数据分析、图形关键技术和智慧Java。一些突破性的新方法之前证明了建构来自相同技术水平的资料集的技能,例如,表达出来簇和转录基因组基序的遗传团体的相似性,为了实现蛋白渠道数学模型而相结合RNA组和计量氨基酸小组资料,以及辨别重新人体内安RNA本相似性。之后,可以采用资料来实现和优化实时数学模型,这代表人了更为文职别的资料功能强大。